TRANSIENT DISPLACEMENT FIELDS IN HEXAGONAL
CRYSTALS AND TRANSVERSALLY ISOTROPIC MEDIA

V. 8. Budaev UDC 539.3—534,231.1

The structure of the disturbed region and the geometry of the wave front is investigated under
the condition that a concentrated source of the instantaneous-pulse type is acting in an un-
bounded transversally isotropic medium. The regions of permissible values of the anisotropy
coefficient introduced in [1] for transversally isotropic media on the basis of conditions of the
elastic energy's positive-definiteness and hyperbolicity conditions are determined. It is sug-
gested that motion of the medium occurs under conditions of plane deformation.

§1. A detailed investigation has been conducted in [1] of the characteristics of the wave fields in elastic
anisotropic media for the case of concentrated sources of pulse-type disturbances. The geometry of the
wave front, the roots of the characteristic equation, and some physical characteristics of the medium have
been investigated. In order to describe the properties of specific media, the anisotropy coefficient Ap = (c; —
cg)/¢, is is introduced for the case ¢; = ¢4, Where ¢y, cs, C3, and ¢, are coefficients of the equations

0,071,052 — 0%/ 0x0z + 07U, §5° — pd%u/0F = payf;
30w 02 — ¢,0°u/0x0z + ¢, 0w, 022 — pd*w/dt? = pa,f,

which describe the medium's motion under the conditions of plane deformation.

Here u and w are the displacement components along the % and z axes. The direction of the coordi-
nate axes is chosen as a function of the specific kind of elastic symmetry (as in [1]). If the source of the
disturbances is localized at the origin of coordinates and is a concentrated pulse, the right-hand sides
should be taken in the form

Cf = 8(x)8(2)8(2).

Media possessing cubic symmetry are discussed in detail in [1]. It is shown that the entire region of permis-
sible values of Ap and a(a = c3/cy) is divided into four regions. The presence and arrangement of lacunae
and the form of the roots of the characteristice equation aredetermined as a function of which of the regions

a point having the coordinates A 5 and « falls into. The boundaries of the permissible values of Aj and «
are determined by the conditions of hyperbolicity and positive-definiteness of the elastic energy. The two
parameters A and ¢ completely determine the behavior of the medium under the conditions of plane de-
formation in the case of cubic symmetry.

Let us now consider hexagonal crystals and transversally isotropic media. V. L. German proved a
theorem in 1944 which generalizes Neumann's principle to the case of complex anisotropic media [2]: "Ifa
medium possesses an axis of symmetry of order n, then it is axially isotropic with respect to this axis for
all physical properties whose characteristics are determined by tensors of rank r, if r < n. Thus, for ex-
ample, the plane perpendicular to this axis will be a plane of isotropy for elastic properties (r =4) already
upon the existence of fifth-order (n = 5) symmetry." This theorem permits not drawing distinctions between
hexagonal crystals and transversally isotropic media and has important practical application in the analysis
of the symmetry of the elastic properties of multilayered media comprised of orthotropic layers. All the
directions in the plane of a lamina of such a material are equivalent if the angle between the direction of the
fibers in adjacent layers is less than ¢ = 27/5 = 72°. The plane of a lamina is in this case the plane of iso-
tropy, and the axis perpendicular to it is the axis of symmetry of infinite order. Thus, all layered materials
having stellate structure are transversally isotropic if the angle between the direction of the fibers in ad-
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jacent layers is ¢ < 72°., German's theorem permits extending without alteration the results derived for
transversally isotropic media to all media which have at each point an axis of symmetry of order n =5, in
particular, to hexagonal crystals (n = 6). Therefore, all the discussions are carried out for transversally
isotropic media.

The expression for the elastic energy in the case of plane deformation is written in the form
2W = cyely — cyet 2 (0 — €5) BynBar Csf s
where ¢;; is the deformation tensor.
The conditions of positive-definiteness W are of the form
crcy — (€3 — ) >0

and agree with the condition of the realness of the roots to Rayleigh's equation [3]. Upon the condition e = Cy,
we obtain

i > (6, — cy)R 1.1}

According to [3], the conditions (1.1) are always fulfilled if o < 1, i.e., ¢3 < ¢;, and, consequently, they
do not impose restrictions on Ap when o < 1. The lower boundary of permissible values of A A in the inter-
val o <1 is determined by the hyperbolicity conditions and coincides with the boundary cited in [1].

Additional restrictions on Ap, namely, Ap < Ai(a), a <1, which were derived in [1] for cubic crystals,
are caused by the conditions of positive-definiteness of the elastic energy in the case of a triaxial deforma-
tion.

In the case of systems not pertaining to cubic crystals the conditions of the elastic energy's positive-
definiteness upon a triaxial deformation relate the elastic constants which do enter into the expressions for
the cj (whose number is always four) and which do not enter into the expressions for the ¢i in the case of
transversally-isotropic media

€y = Qq1, €2 = Qi3 T fyqy, €3 = G4, C4 = lgg;

ayp does not enter into the expressions for the cj. We have for orthotropic materials

J— — 1
€1 = Gy €3 = Qi3 T Qg5 C3 = g5, €4 = Ogg.

The five remaining elastic constants do not enter into the expressions for the c;. Since the conditions of
positive-definiteness linking all the elastic constants for each kind of elastic symmetry (regardiess of
whether plane or triaxial deformation is being considered) must always be fulfilled for actual media, it is
necessary to take these conditions into account in determining the permissible values of A A a2nd . In the
case of transversally-isotropic media the conditions of the elastic energy's positive- definiteness, which link
all five elastic constants, are of the form

a3 >0 ay > anl, (411+012)033>2a%3,
whence
€y >0, ky, <1, cic4>1;—21(c2~ £3)3, (1.2)
where
by = laplic; by =1 4+ ky; by << 2.

In the particular case under discussion, in which c; = ¢4, we obtain from (1.2) the fact that in the inter-
val og <« <1 all values of Ap from the interval Apj(a) <Ap <Apg(a@), Where Apg (@) = (1 ~a)/a + ap),
AA2(e) =(1 = a)/(a — ak), and ak =Vk;/2, are permissible. All values Ap > Aas(a) are permissible in
the interval 0 < o < ak. Since ky < 2 (provided that ¢; > [ay, |), we obtain ok < 1. Curves of Aaq(a) and
AA2(a) are shown in Fig. 1 [curves 5' and 5", respectively; curve 5 is Ai(a)].

The curves 1-4 differ in no way from the corresponding curves cited in [1] in Fig. 3.2.

Since ok < 1, the curve of A7 (@) passes above Aap(a) (curve 4), which is defined by the hyperbolic-
ity conditions, and in this way decreases the region of permissible values of A A in comparison with cubic
crystals. However, the curve of aa2(c) passes to the right of the curve of Aji(oz), which corresponds to an
increase in the region of permissible values of A A and ¢ in comparison with cubic erystals, The values
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AA<AAl(a) and Ap > Apg(e) are forbidden (crosshatched area). In particular, all ¢ > 1 fall in this re-
gion. Just as in the case of cubic crystals, only the values c3 < ¢; are permissible, i.e., the velocity of
quasitransverse waves are always‘ less than the velocity of quasilongitudinal waves.

One of the important consequences which follows from the cited results is the fact that the boundaries
of permissible values of Aj and ¢ are determined not by the conditions of positive-definiteness W for plane
deformation, which are of the identical form for materials of different symmetry, but from the conditions of
positive-definiteness in the case of triaxial deformation, in which W depends on the complete set of elastic
constants, whose number is different for different classes of elastic symmetry and is greater than three in
all cases except cubic crystals. In particular, the boundaries of permissible values are fixed only for cubic
crystals. In all other cases their position depends on the elastic constants which do not enter into the c;j.

THEOREM OF CONNECTIVITY. The transformation

’ 4 ’
C1=C13 0+ €3y C3=C; 4 C3— €y, C2= €1 Cy, (1.3)

converts media of region I to media of region III and media of region II to media of region IV (see Fig. 1).
The inverse transformation results in the reverse conversion.

Proof, It is sufficient for proving this theorem to show that A} = (c] —c3)/ey <1 if Ap = (cy —c3)/ey >
1; the permissible values of A5 are converted to permissible AA; forbidden A A — to forbidden Aly; the
boundary A a,(a) is converted to the boundary A%(a'), and the boundary of region T and ITI, i.e., the straight
line, Ap =1, is not altered. The fact that the boundary A Axfla) separating regions I and 1I is converted to
the boundary A%(oz’) separating regions III and IV is shown in [1]. From (1.3) we obtain

aiey=[(1+ @)+ VT+am—=1]/2, .

cler=[1+a)— VT T aF=%]/2, cley=1—0,

consequently,

PV b B A e S

- T—a  B,°

Thus, if Ap > 1, then Ay <1, and we have Ay > 1 when Ap < 1. From this it follows in particular that

AA =1 is converted into A}\ =1. The transformation (1.3) does not alter the values of the elastic potential,
since it reduces to a simple rotation of the coordinate axes by an angle of 45°. It was shown ahove that both
in the case of cubic crystals and in the case of transversally isotropic media the boundaries of permissible
values of Ap are completely determined in the case of a triaxial deformation by just the same conditions of
the elastic potential's positive-definiteness. We obtain the fact that the transformation (1.3) cannot be de-
rived beyond the boundary of permissible values of A . The theorem is proven. It follows from this theorem
that: 1) all media with ¢; = ¢, consist of media of the first group and media obtained from them by a rota-
tion of the coordinate axes by 45°; 2) the transformation (1.3) converts roots of a characteristic equation of
the first type to roots of a characteristic equation of the second and third types (according to the classifica-
tion of [4]); and 3) if the coefficients of the equations for two media are connected by the relations (1.3), the
direction of a concentrated pulse load acting in the first medium (AA > 1) makes an angle of 45° with the
direction of the force acting in the second medium (AA < 1), they are equal in magnitude, and the wave pat-
terns in both media coincide completely in the case of 2 rotation of the media by 45° with respect to each
other (the displacements are identical at the same points upon the congruence of the wave patterns). Hence,
one can draw the following conclusions.

1. It is not at all obligatory to have recourse to the solution of the equation t — 65X — u n(0n)z = 0 for
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calculating the displacement curves at points on lines which cross at an angle of 45° or 135° with respect to
the coordinate axes [6].

It is sufficient to replace the values of the coefficients ¢, ¢, and c; according to Egs. (1.3) in the ex-
pressions (3.4) of [6], which give in explicit form the solutions for points lying on the coordinate axes.

2. It is sufficient to know the type of roots of the equations ¢, and an algorithm for their caleulation
for media only of the first group, which is cited in [7], in order to calculate the displacement fields in the
case of a concentrated pulse source for any media with ¢ = ¢4.

In all other cases except cubic crystals the permissible range of values of o when A =1 is greater
than for isotropic media, since the possibility occurs of satisfying the conditions of positive-definiteness
when o > 0.75 owing to the variation of the elastic constants which do not enter into ¢y, ¢, c3, and c,.

§2. Onecanextendthe cited results to media with ¢; = ¢, which is more typical of transversally iso-
tropic media. Thus, cubic crystals are not considered, since ¢ = ¢, always for them. In this case it is
necessary to take A A in the form

Ay = Ve, —e)e = (1 — VoV T —af — v,
where
@ =cyle; B=cyley; y=1--ap—cileg,.
Upon such a definition Ap =1 corresponds, as before, o media of the first group.

The principal difference among media consists of the fact that configurations of wave fronts having two
lacunae are possible for a concentrated pulse source in an unbounded medium.

Under the conditions

a<B alf - <y<Plo—-1 (2.1)
lacunae lie on the z axis (Fig. 2a). Under the conditions
o>, fla—1)<y<<alf + 1) (2.2)

the lacunae are located on the x axis (Fig. 2b).

The set of parameters «, 8, and A o already determines the point in space, and the boundaries sepa-
rating the regions are surfaces. The cross section of these surfaces with the plane o =g determines the
curves 1-4, 5!, and 5" (see Fig. 1). The values of A are restricted from below by the surface

Axpla, B) = (1 —Vap)(t + 1 uB).

The hyperbolicity conditions are not fulfilled below this boundary. The conditions (2.1) and (2.2) determine
regions of which there are none in the case a =8. ’

The line of intersection of the surface Ap = Aar(a, ) with the plane Ap = 0 is the hyperbola ap = 1.
As @f — =, the region of the values of A 5 permitted by the hyperbolicity conditions approaches —1, —1 <
AA <=, just as when ¢ = 8. The straight lines ¢ =0, Az =1 and =0, Ap = 1, respectively, are the inter-
section lines of the surface A ar(w, 8) with the coordinate planes o =0 and g = 0. '

Media of the first group [1, 3] occupy the region in which both the conditions
2801 + o) —v(L =B > — |B — V¥ — 4af;
2a(t +8) — vt + )] > — o — {4V y* — 4ab,

are fulfilled, inside a cylindrical region with the rectangular base Ap =1, o <1, § <1 and lateral bounda-
ries parallel to the coordinate planes. Points arranged between the surfaces Apqla,B) and Apgla, B), i.e.,
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AA,,_(O;, ﬁ) < AA < AAF)(av 8)# o < 57

where

AAC/.(C“ By =0 — Vﬁ)/l/ml,

Agpler, B) =1 =V eRVIT =B,
correspond to media which satisfy the conditions (2.1). A region also situated between the given surfaces but
located on the other side of the plane o =, i.e, where 8 < @, corresponds to the media (2.2). The surface
AAqfa, B) already lies above the surface Apg(a, B). Regions in which both kinds of media are realized disap-
pear as o — 8, since the surfaces Ap, and Aag intersect when @ =g. The line of their intersection defines
the curve AOA = Y1 — ginthe Ap, « plane (see curve 8 in Fig. 1). Media having four lacunae lying on the x
and z axes correspond to the points of the region which lie below Ap,(a, 8) when @ < 8 and below App{a,
B} when B < ¢ [4]. This region is limited from below by the surface Aa1(a, §), The region o >1 and Ap >
1, which is limited by the cylindrical surface o =1 and by the plane Aj =1 from below, is forbidden, since
the conditions of the elastic potential's positive-definiteness are not fulfilled there even for plane deforma-
tion (moreover, media pertaining to this region have imaginary Rayleigh wave velocities [3]).

The conditions of positive definiteness W in case of a triaxial deformation are not fulfilled in the re-
gions above the surface

Asola, B) = (L — [ By (Vap — an)
and below the surface
AAI(QV &3) = (l - lfr/‘—i?))"{.;(h _%‘ l‘/-fﬁ—ﬁ)

and these regions are forbidden. In particular, this includes all the values of o and g where ap > 1, i.e.,
c3 > vV cqcy; however ¢ > 1 and g > 1 are permissible separately but such that o <1 always (@ >1 and

B > 1 are not simultaneously permissible). The position of the surfaces Az and Apg in space depends on
the quantity oy i.e., finally on the elastic constant a5 (or the Poisson coefficient for the y axis in the case
of extension along the. x axis, which is equal to ky,).

§3. Young's modulusfor transversally isotropic media is defined by the expression
1/E = S, sin*0 + Sy cos*0 - (Syy + 28;) sin? 0 cos® 9, (3.1)
where ¢ is the angle figured from the main axis;
Sg3 = (@ + a;1,)S, 8,; = lia,,, (811 + Si) = asS,
(@ — a1} 81— Syp) =1, Siz=—a,S; S=8;4(Sy-+ S1,)— 25%.

The conditions of positive-definiteness for the moduli of elasticity Sij are of the same form as for the elastic
constants ajj, ‘
840>0, 831>181], Sa(Su+ Sw)>28%. (3.2)
Substituting the second of the inequalities (3.2) into the third, we obtain
84sS11> St 1S131 <V S80S (3.3)

Since Sy, S35, and Sy are all positive, E > 0 always when Sy3> 0. When 83 < 0, we write Eq. (3.1) in the
form

1/E = P(8) + S,, sin? cos?0,
Pj(8) = Sy, sin'® -+ Sy cos'0 — 2 |8, sin®0 cos®H. (3.4)
Substituting (3.3) into (3.4), we find
P(8) == Sy; sin®® 4 Sg; c05*0 — 21/ 51184, 5in?d cos?0 = ()5, sin?0 — 1 Sy cos®0)> > 0,
consedquently, P (8) > 0.

Thus, Young's modulus (3.1) is always positive, just as for cubic crystals. In the case of cubic crystals
the anisotropy factor [5] £ 5 = 2a4/(aj;—ayp)s which characterizes the anisotropy of shears, is used to char-
acterize the elastic properties. The isotropy condition £ =1 represents the equality of two wave velocities
in the direction (110)out of the existing three, which are written in the case of cubic crystals in the form
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= V{ay + ap, + 2a,,)/2p;
e = Vian — 02)720; ¢ =V aadp.
Thus, the coefficient £ o characterizes the ratio of the velocities ct] and cig
Ea = (coley ).
The velocities ct1 and ctz are equal to each other on the condition that
2044 = ay — 5. {3.5)
Assuming, according to [1], a;y = Cys ay9 + ay = Cy, and ay = c3, We obtain ¢, ¢y —c3 or Ay T 1 from

(3.5), i.e., Ap =1 follows from the relationship £y = 1, and vice versa. Thus cubic crystals with A =1
are actually isotropic media, and the coefficient Ap is completely equivalent to £ 5 for cubic crystals.

The author expresses his thanks to S. A, Khristianovich for his attention to this work.
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