
T R A N S I E N T  D I S P L A C E M E N T  F I E L D S  IN H E X A G O N A L  

C R Y S T A L S  A N D  T R A N S V E R S A L L Y  I S O T R O P I C  M E D I A  
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The s t ruc ture  of the disturbed region and the geometry  of the wave front is investigated under 
the condition that a concentra ted  source  of the ins tantaneous-pulse  type is acting in an un- 
bounded t r ansve r sa l l y  i so t ropic  medium. The regions of pe rmis s ib l e  values of the anisotropy 
coefficient int roduced in [1] for  t r ansve r sa l ly  isot ropic  media  on the bas is  of conditions of the 
e las t ic  ene rgy ' s  pos i t ive-def in i teness  and hyperbolici ty conditions a re  determined. It is sug- 
gested that motion of the medium occurs  under conditions of plane deformation. 

w A detailed investigation has been conducted in [1] of the cha rac t e r i s t i c s  of the wave fields in elast ic 
anisot ropic  media  for  the case  of concentra ted sources  of pulse- type  disturbances.  The geometry  of the 
wave front, the roots  of the cha rac te r i s t i c  equation, and some physical  cha rac t e r i s t i c s  of the medium have 
been investigated. In o r d e r  to descr ibe  the p rope r t i e s  of specific media,  the anisotropy coefficient A A = (c 1 - 
e3)/c 2 is is introduced for  the case  c 1 = c4, where  cl, c2, c3, and c 4 a re  coefficients of the equations 

clO"-u:c)x2~ c~O"-w'Oxc~z '-- c30"-u, Oz'- - -  pO2u/Ot ~ = pa~]; 

c30~w:'Ox '- -~ c.,fl'-u,'OxOz ~ c~c)~w, Oz"- - -  pO2w/c~t "- = pa,.], 

which descr ibe  the medium'  s motion under the conditions of plane deformation. 

Here u and w a r e  the displacement  components along the ~: and z axes. The direction of the coordi -  
nate axes is chosen as a function of the specific kind of e las t ic  s y m m e t r y  (as in [1]). If the source  of the 
d is turbances  is local ized at the origin of coordinates  and is a concentrated pulse,  the r ight-hand sides 
should be taken in the form 

/ = 5(x)~(z)5( t ) .  

Media posses s ing  cubic s y m m e t r y  a re  d i scussed  in detail in [1]. It is shown that the entire region of p e r m i s -  
sible values of A A and c~(~ = c3 /c  l) is divided into four regions.  The p resence  and a r rangement  of lacunae 
and the form of the roots  of the cha rac t e r i s t i ce  equation are  de termined as a func t ionofwhichof the  regions 
a point having the coordinates  A A and ~ fa l l s  into. The boundaries  of the pe rmis s ib l e  values of Lx A and 
a re  de termined by the conditions of hyperbolici ty and posi t ive-def in i teness  of the elast ic  energy. The two 
p a r a m e t e r s  A A and oz completely determine the behavior  of the medium under the conditions of plane de- 
format ion in the case  of cubic symmet ry .  

Let us now cons ider  hexagonal c rys t a l s  and t r ansve r sa l ly  isotropic media. V. L. German proved a 
theorem in 1944 which genera l izes  Neumann's  pr inciple  to the case  of complex anisotropic  media  [2]: "If  a 
medium p o s s e s s e s  an axis of s y m m e t r y  of o rde r  n, then it is axially isotropic  with respec t  to this axis for 
all physical  p rope r t i e s  whose cha rac t e r i s t i c s  a re  determined by t ensors  of rank r, if r < n. Thus, for ex- 
ample,  the plane perpendicu la r  to this axis will be a plane of isotropy for elast ic  p roper t i e s  ( r = 4) already 
upon the existence of f i f th -order  ( n = 5) symmet ry . "  This theorem pe rmi t s  not drawing distinctions between 
hexagonal c ry s t a l s  and t r ansve r sa l ly  isot ropic  media  and has important  p rac t ica l  application in the analysis  
of the s y m m e t r y  of the elast ic  p rope r t i e s  of mul t i l ayered  media  compr i sed  of or thotropic  layers .  All the 
direct ions in the plane of a lamina of such a ma te r i a l  a r e  equivalent if the angle between the direction of the 
f ibers  in adjacent  l aye r s  is less  than (p = 27/5 = 72 ~ The plane of a lamina is in this case the plane of iso-  
t ropy,  and the axis perpendicu la r  to it is the axis of s y m m e t r y  of infinite o rder .  Thus, all l ayered  mate r ia l s  
having stel late s t ruc tu re  a re  t r ansve r sa l ly  isotropic  if the angle between the direction of the f ibers  in ad- 
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jacent  l aye r s  is r < 72 ~ German ' s  theorem pe rmi t s  extending without al terat ion the resul ts  der ived for 
t r ansve r sa l ly  i so t ropic  media  to all media  which have at each point an axis of s y m m e t r y  of o rde r  n _ 5, in 
par t icu lar ,  to hexagonal c rys ta l s  ( n = 6). Therefore ,  all the discussions a re  ca r r i ed  out for t r ansver saUy 
iso t ropic  media. 

The expression for the elastic energy in the case of plane deformation is written in the form 

where  t j i  is the deformation tensor.  

The conditions of posi t ive-def ini teness  W are  of the fornl 

cic~ - -  (c~ - -  c~) ~ " ~  0 

and agree  with the condition of the rea lness  of the roots  to Rayle igh 's  equation [3]. Upon the condition e 1 = c4, 
we obtain 

c~ > (c: - c~V. ( i . i )  

According to [3], the conditions (1.1) a re  always fulfilled if ~ < 1, i.e., % < cl, and, consequently, they 
do not impose res t r i c t ions  on s when ~ < 1. The lower  boundary of pe rmiss ib le  values of A A in the inter-  
val c~ < 1 is de termined by the hyperbolici ty conditions and coincides with the boundary cited in [1]. 

Additional res t r i c t ions  on AA, namely,  s A < ~ ( ~ ) ,  ~ < 1, which were  derived in [i] for  cubic c rys ta l s ,  
a re  caused by the conditions of posi t ive-def ini teness  of the elast ic energy in the case of a tr iaxial  deforma-  
tion. 

In the case  of sys tems  not per ta ining to cubic c rys ta l s  the conditions of the elast ic ene rgy ' s  posi t ive-  
definiteness upon a t r iaxial  deformation relate the elast ic  constants which do enter  into the express ions  for 
the ci (whose number  is always four) and which do not enter into the express ions  for  the c i in the case of 
t r a n s v e r  sa l ly - i so t rop ic  media  

C1 : GII, C2 : (/13 T t74~, C 3 : a 4 ~ ,  c~ : a33 ; 

a12 does not enter  into the express ions  for  the c i. We have for  or thot ropic  mate r ia l s  

C1 = 6~11~ C2 = (/13 T 6155~ C3 : 6/55~ C 4 = 6633. 

The five remaining elast ic  constants do not enter  into the express ions  for the c i. Since the conditions of 
pos i t ive-def in i teness  linking all the e las t ic  constants for  each kind of elast ic  symmet ry  ( regard less  of 
whether  plane o r  t r iaxial  deformation is being considered) must  always be fulfilled for  actual media, it is 
n e c e s s a r y  to take these conditions into account in determining the pe rmiss ib le  values of A A and ~. In the 
case of t r ansve r sa l l y - i so t rop i c  media  the conditions of the elast ic  ene rgy ' s  pos i t ive-  definiteness,  which link 
all five elast ic  constants,  a re  of the form 

a,, > O, an > I ai2 I, 

whence 

(an -- ale) a33 ~ 2a~Zs , 

where 

c ~  O, k~.,~J, ciQ'~-~(c.., c3)2 (i.2) 
_ / ~ k i  - -  

kl~. = [ai21/cl; k 1 ~ t + kl~; kl ~ 2. 

In the pa r t i cu l a r  case  under discussion,  in which c 1 = c4, we obtain from (1.2) the fact that in the in ter -  
val c~ < a < 1 all values of AA from the interval  AAI(a)  < AA < AA2 (a),  where  AA1 (a) = (1 - c~)/(a + ~A) ,  
AA2(a)  = ( 1 -  a ) / ( a  - ~k) ,  and ~k  = ~ ,  a re  permiss ib le .  All values AA > AA2(~) are  pe rmiss ib le  in 
the interval  0 < a < ak .  Since k 1 < 2 (provided that c I > [ a12 I), we obtain ~k  < 1. Curves of A A I ( a )  and 
AA2(a)  a re  shown in Fig. 1 [curves  5'  and 5", respect ively;  curve 5 is A i ( a )  ]. 

The curves  1-4 differ in no way f rom the corresponding curves  cited in [1] in Fig. 3.2. 

Since a k < 1, the curve  of &A1 (a )  p a s s e s  above AAF (~) (curve 4), which is defined by the hyperbol ic-  
ity conditions, and in this way dec reases  the region of pe rmiss ib le  values of AA in compar ison with cubic 
c rys ta l s .  However, the curve of aA2 (~  p a s s e s  to the right of the curve of A~(a ) ,  which corresponds  to an 
inc rease  in the region of pe rmiss ib le  values of AA and a in compar ison with cubic crys ta ls .  The values 
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AA < AAI (a) and A A > AA2 (a) are forbidden (crosshatched area). In particular, all ~ > 1 fall in this re- 
gion. Jus t  as  in the ca se  of  cubic c r y s t a l s ,  only the va lues  c 3 < c 1 a r e  p e r m i s s i b l e ,  i .e . ,  the ve loc i ty  of 
q u a s i t r a n s v e r s e  waves  a r e  a lways  l e s s  than the ve loc i ty  of quasilongitudinal  waves .  

One of the impor t an t  consequences  which follows f rom the ci ted r e su l t s  is  the fact  that  the boundar ies  
of p e r m i s s i b l e  va lues  of  AA and c~ a r e  de t e rmined  not by the conditions of pos i t ive -de f in i t eness  W for  p lane  
deformat ion ,  which a r e  of the identical  f o r m  for  m a t e r i a l s  of d i f ferent  s y m m e t r y ,  but f rom the conditions of 
pos i t i ve -de f in i t enes s  in the case  of t r i ax ia l  deformat ion ,  in which W depends on the comple te  set  of e las t ic  
constants ,  whose  n u m b e r  is  d i f ferent  for  d i f ferent  c l a s s e s  of e las t ic  s y m m e t r y  and is  g r e a t e r  than th ree  in 
all  c a s e s  except  cubic c r y s t a l s .  In pa r t i cu l a r ,  the boundar ies  of p e r m i s s i b l e  values  a r e  fixed only fo r  cubic 
c ry s t a l s .  In al l  o the r  c a se s  t he i r  pos i t ion  depends on the e las t ic  constants  which do not en te r  into the c i. 

THEOREM OF CONNECTIVITY. The t r a n s f o r m a t i o n  

conver t s  m e d i a  of  region I to m e d i a  of  region IH and med ia  of region II to med ia  of region IV ( see  Fig. 1). 
The i n v e r s e  t r a n s f o r m a t i o n  r e s u l t s  in the r e v e r s e  convers ion.  

Proof .  It i s  suff ic ient  fo r  p rov ing  this  t heo rem to show that  A k  = ( e~ - c'3 )'/c~' < 1 if  AA = (ct - c3)/c2 > 
1; the p e r m i s s i b l e  va lues  of A A a r e  conver t ed  to p e r m i s s i b l e  A k ;  forbidden A A -  to forbidden A k ;  the 
boundary  A A , ( a )  i s  conver t ed  to the boundary  A k ( a ' ) ,  and the boundary  of region I and III, i .e . ,  the s t ra igh t  
l ine,  A A = 1, i s  not a l te red .  The fac t  tha t  the boundary  A A . ( ~ )  separa t ing  reg ions  I and II  is  conver ted  to 
the boundary  A k ( a '  ) s epa ra t ing  regions  III and IV is  shown in [1]. F rom (1.3) we obtain 

consequently, 

- c~ i -- ~ A A 

Thus, if AA > 1, then A~ < i, andwe have A~ > 1 when AA < i. From this it follows in particular that 
A A = 1 is converted into A~ = i. The transformation (1.3) does not alter the values of the elastic potential, 
since it reduces to a simple rotation of the coordinate axes by an angle of 45 ~ It was shown above that both 
in the case of cubic crystals and in the case of transversally isotropic media the boundaries of permissible 
values of A A are completely determined in the case of a triaxial deformation by just the same conditions of 
the elastic potential's positive-definiteness. We obtain the fact that the transformation (1.3) cannot be de- 
rived beyond the boundary of permissible values of A A. The theorem is proven. It follows from this theorem 
that: 1) all media with c i = c 4 consist of media of the first group and media obtained from them by a rota- 
tion of the coordinate axes by 45~ 2) the transformation (1.3) converts roots of a characteristic equation of 
the first type to roots of a characteristic equation of the second and third types (according to the classifica- 
tion of [4]); and 3) if the coefficients of the equations for two media are connected by the relations (1.3), the 
direction of a concentrated pulse load acting in the first medium ( AA > 1) makes an angle of 45 ~ with the 
direction of the force acting in the second medium (A A < 1 ), they are equal in magnitude, and the wave pat- 
terns in both media coincide completely in the case of a rotation of the media by 45 ~ with respect to each 
other (the displacements are identical at the same points upon the congruence of the wave patterns). Hence, 

one can draw the following conclusions. 

I. It is not at all obligatory to have recourse to the solution of the equation t - 0nX -~n(0n)Z = 0 for 
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calculating the displacement curves at points on lines which cross at an angle of 45 ~ or 135 ~ with respect to 

the coordinate axes [6]. 

It is sufficient to replace the values of the coefficients Cl, (:2, and c 3 according to Eqs. (1.3) in the ex- 

pressions (3.4) of [6], which give in explicit form the solutions for points lying on the coordinate axes. 

2. It is sufficient to know the type of roots of the equations 0 n and an algorithm for their calculation 

for media only of the first group, which is cited in [7], in order to calculate the displacement fields in the 

case of a concentrated pulse source for any media with c I = c 4. 

In all other cases except cubic crystals the permissible range of values of ~ when A A = 1 is greater 

than for isotropic media, since the possibility occurs of satisfying the conditions of positive-definiteness 

when ~ > 0.75 owing to the variation of the elastic constants which do not enter into cl, c2, c3, and c4. 

w One can extend the cited results to media with c 1 ~ c 4 which is more typical of transversally iso- 

tropic media. Thus, cubic crystals are not considered, since c 1 = c 4 always for them. In this case it is 

necessary to take AA in the form 

where 

o: : cJcl; ~ = e3/c~; ? = i + ~ -- c?~/clq. 

Upon such a definition A A _> i corresponds, as before, to media of the first group. 

The principal difference among media consists of the fact that configurations of wave fronts having two 

lacunae are possible for a concentrated pulse source in an unbounded medium. 

Under the conditions 

~z < p, ~(p = l )  < 7 < 13(~ - -  1) ( 2 . 1 )  

l a c u n a e  l i e  on the  z a x i s  ( Fig .  2a). U n d e r  t he  c ond i t i ons  

cr > ~, ~(a -? t) < ~, < ~(~ + l) (2.2) 

the  l a c u n a e  a r e  l o c a t e d  on the  x a x i s  ( Fig .  2b ) .  

The  se t  of  p a r a m e t e r s  a ,  13, and  ~ A  a l r e a d y  d e t e r m i n e s  the  po in t  in s p a c e ,  and  the  b o u n d a r i e s  s e p a -  
r a t i n g  the  r e g i o n s  a r e  s u r f a c e s .  T h e  c r o s s  s e c t i o n  of  t h e s e  s u r f a c e s  wi th  the  p l a n e  a = f~ d e t e r m i n e s  the  
c u r v e s  1 -4 ,  5 ' ,  and  5" ( s e e  Fig .  1). The  v a l u e s  of  A A a r e  r e s t r i c t e d  f r o m  b e l o w  by  the  s u r f a c e  

A~v(~, P) = (i - l / ~ ) / ( ~  + V-bTr 

The  h y p e r b o l i c i t y  cond i t i ons  a r e  not  f u l f i l l e d  b e l o w  th i s  b o u n d a r y .  The  cond i t i ons  (2.1) and  (2.2) d e t e r m i n e  
r e g i o n s  of  w h i c h  t h e r e  a r e  none in the  c a s e  a = ft. 

The  l i ne  of  i n t e r s e c t i o n  of  the  s u r f a c e  ~ A  = ~ A F (  a ,  fi) w i th  the  p l a n e  A A = 0 i s  the  h y p e r b o l a  aft = 1. 
A s  aft ~ 0% t he  r e g i o n  of  the  v a l u e s  of  A A p e r m i t t e d  b y  the  h y p e r b o l i c i t y  c ond i t i ons  a p p r o a c h e s  - 1 ,  - 1  < 
A A  <o% j u s t  a s  when  a = ft. The  s t r a i g h t  l i n e s  a = 0~ A A  = 1 and fl= 0, ~A = 1, r e s p e c t i v e l y ,  a r e  the  i n t e r -  
s e c t i o n  l i n e s  o f  t he  s u r f a c e  A A F ( ~ ,  fl) w i th  the  c o o r d i n a t e  p l a n e s  c~ = 0 and  fi = 0. 

M e d i a  of  t he  f i r s t  g roup  [1, 3] occupy  the  r e g i o n  in w h i c h  bo th  t he  c ond i t i ons  

[2~(1  + ~) - v ( l  + ~)]  ~ - I~ - l i v e -  r  
[2a(l + ~) -- V(I § u)] > -- [~ -- IIV7 ~ -- 4a~, 

are fulfilled, inside a cylindrical region with the rectangular base A A = i, a < I, fi < 1 and lateral bounda- 

ries parallel to the coordinate planes. Points arranged between the surfaces ~A~(Oz, fi) and ~Afl(~,/3), i.e., 
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A~,(~.,,. ~) < & < A ~ ( ~ ,  I%, o: < 13, 

w h e r e  
&<<(~, ~) = (1 - V - ~ ) I V  ! t - ~ 1 ;  

&~(~,., 8) = (1 - V ~ ) i l / I  t - ~1. 

c o r r e s p o n d  to med ia  which sa t i s fy  the conditions (2.1). A region a lso  s i tuated between the given su r f ace s  but 
loca ted  on the o ther  side of  the p lane  a =/7, i .e,  whe re /7  < a,  c o r r e s p o n d s  to the med ia  (2.2). The su r face  
A A ~ ( a  ,/7) a l r e a d y  l i e s  above the su r f ace  AA/7 (a  , [}). Regions  in which both kinds of m e d i a  a r e  r ea l i zed  d i sap-  
p e a r  as  {~ -*.fl, s ince the s u r f a c e s  A A a  and AA/7 i n t e r s e c t  when a =/7. The line of t he i r  in te rsec t ion  defines 
the cu rve  A~k = ~/1 - {~ in the AA, a p lane  ( see  cu rve  3 in Fig. 1). Media having four  lacunae lying on the x 
and z axes  c o r r e s p o n d  to the points  of the region which l ie below AAa(a , /7 )  when a < /7 and below AAtT(~, 
/7) when /7 < ~ [4]. Th is  reg ion  is  l imi ted  f r o m  below by  the su r face  AA1 (a ,  fl), The region a/7 > 1 and A A > 
1, which is l im i t ed  by  the cy l indr ica l  su r face  aft  = 1 and by  the p lane  A A = 1 f r o m  below, is  forbidden, s ince 
the condit ions of the e las t i c  p o t e n t i a l ' s  pos i t i ve -de f in i t enes s  a r e  not fulfi l led the re  even for  plane de fo rma-  
tion ( m o r e o v e r ,  m e d i a  pe r t a in ing  to th is  region have imag ina ry  Rayle igh wave ve loc i t i e s  [3]). 

The conditions of  pos i t ive  def in i teness  W in case  of a t r i ax ia l  deformat ion  a r e  not fulfilled in the r e -  
gions above the su r f ace  

A_~.,(~z, I~) = (1 - t ' -~) : ( ! / -~/F - : ~ )  

and below the su r f ace  

A,,~(~, i3) : (1 - -  V "~ ) .  6"-'~, -= 11-'-'7~) 

and these  reg ions  a r e  forbidden.  In p a r t i c u l a r ,  th is  includes all the va lues  of  a and/7 whe re  aft  > 1, i .e . ,  
c a > ~/cic4; however  a > 1 and/7 > 1 a r e  p e r m i s s i b l e  s epa ra t e ly  but such that  a/7 < 1 a lways (a  >1 and 
/7 > 1 a r e  not s imul taneous ly  pe rm i s s i b l e ) .  The pos i t ion  of the su r f ace s  AA1 and AA2 in space  depends on 
the quantity a k  i .e . ,  f inal ly on the e las t i c  constant  al2 (or  the p o i s s o n  coeff icient  for  the y axis in the case  
of extension along the. x axis ,  which is  equal to k12 ). 

w Young 's  m o d u l u s f o r  t r a n s v e r s a l l y  i so t rop ic  med ia  is  defined by the express ion  

t!E : Sn sin40 -I- $8.~ COS40 ~- ($4~ -7 2&~) ~in ~ 0 co~ ~> 0, (3.1) 

w h e r e  0 is the angle  f igured  f rom the main  axis ;  

$33 : (a11 -Jr- a12)S, $4~ ~- I/a44, ( S n  -P- $12) : a 8 3 S ,  

( a n - -  a ~ ) ( S n - -  $I~) : I ,  S~3 = - -  a J ;  S = S3a(Sn + S ~ )  - -  2S2i3. 

The conditions of  pos i t i ve -de f in i t enes s  for  the moduli  of e las t i c i ty  Sij a r e  of  the s a m e  fo rm as for  the e las t ic  

cons tants  aij ,  

344 > 0, Sll > 1 312 1, 333 ( Six + S1D > 2S[~. (3.2) 

Substituting the second of the inequal i t ies  (3.2) into the third,  we obtain 

$33Sll > SI 2, IS131 < ]/fSllS33. (3.3) 

Since SIi, $33, and Sii  a r e  al l  pos i t ive ,  E > 0 a lways  when S13 > 0. When Si3 < 0, we wr i t e  Eq. (3.1) in the 

fo rm 

I/E : P(0) ,-P $4~ sin~0 cos~0, 
P/(O) ~-- S n  sin~0 + Ss3 cosa0 - -  2 [S13 [ sin'20 cos~0. (3.4) 

Substituting (3.3) into (3.4), we find 

p , (o )  ---- S~l ~ n ' O  + &.~ ~o~*O - 2 V  & & ~  ~ . ~ o  ~o~O = (VS-a~ ~.-~o - 1 /~ -~  co~OY > o, 

consequently,  P (0) > 0. 

Thus,  Young 's  modulus  (3.1) is a lways  pos i t ive ,  jus t  as  fo r  cubic c rys ta l s .  In the case  of cubic c r y s t a l s  
the an i so t ropy  f ac to r  [5] ~ A = 2 a 4 J ( a u - a l 2 ) "  which c h a r a c t e r i z e s  the an iso t ropy  of s h e a r s ,  is  used  to cha r -  
a e t e r i z e  the e las t ic  p r o p e r t i e s .  The i so t ropy  condition ~A = 1 r e p r e s e n t s  the equali ty of two wave veloci t ies  
in the d i rec t ion  < 110 > out of the exis t ing th ree ,  which a r e  wr i t t en  in the case  of cubic c r y s t a l s  in the fo rm 
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cz= 1/(-~11 § a12 § 2a~4)/29; 

c,1 = V i a l 1  - a ._) /2p;  ct2 = V ~ T o .  

Thus,  the coeff icient  ~A c h a r a c t e r i z e s  the ra t io  of the ve loc i t ies  Ctl and ct2 

~-A = (c~2/c~0 "~. 

The ve loc i t i es  Ctl and ct2 a r e  equal to each  o the r  on the condition that  

2a4~ = an --  at,.. (3.5) 

Assuming, according to [i], a l l  = c1, ai2 + a44 = c2, and  a44 = c3, we obtain c 2 = c i - c  3 or A A = 1 from 
(3.5), i.e., A A = 1 follows from the relationship ~A = 1, and vice versa. Thus cubic crystals with A A = 1 
are actually isotropic media, and the coefficient A A is completely equivalent to }A for cubic crystals. 

The author expresses his thanks to S. A. Khristianovich for his attention to this work. 
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